ON THE SOLUTION OF A BOUNDARY VALUE PROBLEM ON
THE SLOSHING OF A LIQUID IN CONICAL CAVITIES

(K RESHENIIU KRAEVOI ZADACHI O KOLEBANIIAKH
ZHIDKOSTI V KONICHESKIKH POLOSTIAKH)
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The problem of determining the dynamic
partially filling a moving cylindrical
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characteristics of a sloshing fluid
cavity was solved by G.S. Narimanov,
D.E. Okhotslimskii, B.I. Rabinovich
and N.N. Moiseev. The values of the
free vibration frequencies of a shal-
low fluid in a conical bottom with
large apex angles were obtained in
[1] by a variational method.

An analytical solutlon of the prob-
lem of fluld sloshing in a moving
cone with a small apex angle 1s given
below, and not only the frequencies
but also the apparent mass of the
fluid 1in cavitles with any coning
angle are determined by a variational
method.

Let us represent the displacement
potential of an ideal incompressible
fluid in the form of the sum

D (2, 9,z 1) =zu(l)+ ¥z 'y, 0 O

+ Dl 0 @y, D () ()

n=1

Here u© 1s the displacement, w
the rotation of the cavity and r, a
generallzed coordinate of fluid
sloshing (Fig. 1)

From the condition of impermeabi-
1ity on the wetted surface § and
the constancy of the pressure on the
free surface ¥ , we have the follow-
ing boundary conditions for Y and g, :
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The equations of the disturbed motion of a cavity partilally filled with
fluid in the x*z* plane have the form

0]
W+ wu+ X Ay, =P

n=1

[e]
(e Do+ D hgr =M @)
n=1
Bn (rn” + cnzrn) + }“nu“ + )"0!.(0 =0
(n=1,2,...)

Here p°+ u 1s the mass of the body plus the fluild, J° 1s the moment of
inertia of the solid body relative to the y~axis and the apparent masses

ln. mn,pn,J'.and the fluld sloshing frequenciles cnz are determined by
Formulas
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It is assumed that a unit mass-force vector acts on a fluld with unit
degsity.o The free surface profile ¥ 1intersects the xz plane at the point
x, 0, z

By virtue of (2) and (3) the boundary value problem for the cone in the
spherical R, 8, n coordinate system (Fig. 1) 1is written in the form
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The boundary condition of constancy of the pressure on the disturbed free
surface ¥ 1s here transferred to the surface of the spherical segment
R = R,, 0 <0<0,, which is possible as long as the helght of the latter 1s
commensurate with the height of the wave,.

Using separation of variables, we obtain the solution of the boundary
value problem (6)
P,(0) X R™? [(v 4 1) R + v]
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Here v 1is the n-th root of Equation dP, (84 /d® =0, ana P, 8) is the
first associated Legendre function of the t'irst kind of v-th order.

The function ¥ can be represented as
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which, after certain transformations may be written
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The coefficlents (5) of the system of equations of motion (4) of a conical
cavity (Fig. 1) with fluid take the form
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The coefficlents for a cone with a vertex turned downward may be obtained

analogously. As an example, let us present the expression for the coeffici-
ents for a pointed, untruncated conical bottom (Fig.2)
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Let us present the values of the first root win = 1) of Egquation
Y{(eo) = 0 and the corresponding values of v, for certain values of the
cone half apex angle @,

By == {° i 7° 11° 15 200 25° 302

v== 103.0 34.67 14.55 9.128 6.584 4.843 3.806 3.120
Ti= 1,208 1.300 1.302 1.307 1.313 1.325 1.341 1.360

Fig. 1 shows the good agreement between the experimental, nondimensional
values of theofrequency of the first mode of the fluid sloshing ola in a
cone (9, = 11°) and the theoretical values (10) as a function of A,

The obtained solutions of boundary value problems {(6) and (7) start to
yield a significant discrepancy from practice for blunt cones. This is
explained by the boundary conditlion on the free surface not being satisfied
exactly.

Let us reduce the solution of boundary value problems (2) and (3) to the
determination of the extremum of the functionals. Using a variational method
[1], we obtain
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Following the Ritz method, let us seek the functions @ and F as
sequences of llnear com-
binations of the coordi~

2.0 T nate functions
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’\ | taken as coordinate func-
0.4 R tions for the convergence
) j» ‘\ of the Ritz method.

-
3= Sut(asﬁituting the finite
0 L3 sums (1 into the func-
¢ 50 60 %, tionals 212) and (13),
and equating the partial
Fig., 2 derlvatives of the func-
tionals with respect to
the undetermined ccefficients a, and ¢, to zero, we obtain a homogeneous
linear system of algebraic equations for g, and an inhomogeneous system

for o,
(A —o'Bjsa=0, De=1q {15)

Here 4, B and » are symmetric square matrices of rank % composed from
the coefficlents amp, mps (5mp, respectively, and the guantities &, ¢ and n
are k-dimensional vectors with components g,, ¢, and n,

For the harmonlc functions vy, and ¢,
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As the number of terms % of the sum (14) increases, the n~th eigenvalue
0,2 of the matrix of the first system of Equations (15) converges to values
of the partlal frequency of the n-th mode of the fluild shloshing in the ca-
vity, and the function o, (14) determined by the n-th eigenvector of the
matrix (15) approximates the wave shape of the n-th mode .

The apparent masses of fluid sloshing in the cavity will be determined by
Formulas

&
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where 112 :
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We will use the constructed complete sys- / ,ﬁx%vf
tem of functions (8) and (9) as the system !, 2
of coordinate functions vy, and (, for the 1 o {
Ritz method. 095L7“_A#m~_\,__/

Fig. 3 illustrates the character of the 4 |
convergence of the apparent masses and fre- !
quencies for successive approximations of the /

Ritz method for the §,= 11°case. Plotted f

along the horizontal axis 1s the number % of 088

terms of sum in the Ritz method. Plotted along I 7 2
the vertical is the ratio of any of the coef-

ficlients of the k~th approximation to the Fig. 3

corresponding ceoefflclent taken as exact.
The number 4 = 0 corresponds to Formulas
(10). The nature of the convergence of the frequency o7 indicates the
effectiveness of the selection of the basls system of functlons,Fig.2 shows
the ratios of coefficients
)‘12/1-»\1 and lalz/lh for
conical bottoms. These
coef'ficients are indepen-
dent of the method of
selecting the normaliza-
tion, and are determined
both by the basic system
of functions constructed
above (dashes) and by
cylindrical functions
which are the exact solu-
tions of the boundary
value problems {(2) and(3)
for a cylinder circum-
scribed around the coné
(s0lid line). The values
3,% determined by both
methods, agree {curve 1
in Pig. 4). Frequencles

Fig. & determined by Formulas

(11) (curve 5), by For-

mula o sin@, == 1.4459 cot 04 (curve 3) [1] and also the frequencies in a
cylinder circumscribed around the cone (curve 6) are compared with them.
Curve 2 1s determined by the variational method for a cone with vertex up
and curve 4 by Formula {10). The experimental points were cbtained by
Mikishev [2]. All the work assoclated with the programing and computations
on the electronic computer (EVTsM) was performed by E.S. Mironova.

The author is grateful to B.I. Rabinovich for giving his attention to
this work.
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